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Photolysis of either of the cis or trans dihydrothienothiophene sulfones 15 and 16 affords primarily the thieno- 
cyclobutene 6; similarly, the methoxy sulfone isomers 18 yield the methoxythienocyclobutene 19. Both 6 and 19 
undergo ready thermolysis to naphtho[c]thiophene derivatives. Evidence is presented which indicates that the 
thermolysis of 6 does not proceed via a tetravalent sulfur quinodimethane-type intermediate. 

The first thieno[c]cyclobutenes have been reported only 
recently. These include the parent heterocycle l1 and the 
tetrahalo derivatives 2 and 3,* as well as the stable 
thienocyclobutadiene 4.3 Compounds 1 and 4 were pre- 
pared by constructing the thiophene nucleus by a Wittig 
synthesis; compounds 2 and 3 were prepared by a Finkel- 
stein-type dehalogenation of an appropriate halo thio- 
phene (5). 
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We now report the synthesis and properties of several 
3,4-diphenylthieno[c]cyclobutenes (6, 7 and 8), employing 
the photochemical decomposition of a sulfone precursor as 
the key synthetic step. 
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Results 
The photochemical decomposition of the cyclic benzylic 

sulfones 9 and 10 affords a direct synthesis of the con- 
densed cyclobutane aromatic hydrocarbons 11 and 
Consequently, we decided to investigate the applicability 
of this type of reaction in the thiophene series. Thus, per- 
acid oxidation of the known dihydrothienothiophenes 13 
and 145 gave the corresponding sulfone isomers 15 and 16. 

Both 15 and 16 lost sulfur dioxide cleanly upon irradia- 
tion in benzene-methanol in the presence of barium oxide 

Ph Ph 

Ph Ph 

+SO2 @ / 2 WPh Ph 

Ph Ph 
9 10 11 

Ph Ph Ph Ph 

'Ph Ph Ph Ph Ph 
12 13, cis isomer 15, cis isomer 

14, trans isomer 

to give, in good yield, the crystalline trans thienocyclobu- 
tene 6. Careful chromatography of the photolysis residues 
afforded a very small amount of the corresponding cis iso- 
mer 7. The nmr spectra of 6 and 7 showed benzylic sin- 
glets a t  6 4.47 and 5.20, respectively; the corresponding 
reported values for trans-1,2-diphenylbenzocyclobutene 
(1 1) and its cis isomer are 6 4.42 and 5.20, respectively.6 
A two-step conversion of tetraphenylthien0[3,4-~]thio- 

phene (17) to the methoxy sulfone 18 has been r e p ~ r t e d . ~  
We have now found that sulfone 18 can be separated into 
two stereoisomers, A and B (mp 234" dec and 210" dec, 
respectively), both of which lose sulfur dioxide upon irra- 
diation to give the same methoxycyclobutene 19. The nmr 
spectrum of 19, which is probably the trans isomer, shows 

16, trans isomer 

a- single benzylic 
signal at  6 3.00. 
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hydrogen a t  6 4.72 as well as a methoxyl 
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The thienocyclobutene 6 is quite stable in solution at 
temperatures up to about 60". At 75", however, an nmr 
study showed that it rearranged completely in hexachlo- 
robutadiene solution within 45 min. The product, which 
was isomeric with 6 and which showed a one-proton sin- 
glet at  6 5.42 and a two-proton singlet at 6 3.98, was as- 
signed structure 20. Compound 20 was also obtained di- 
rectly by the pyrolysis of sulfones 15 and 16 at their melt- 
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ing points (>200"). Palladium dehydrogenation of 20 af- 
forded the bright red naphtho[c]thiophene derivative 21. 

Ph ph Ph ph 

Ph 
m, 21 

A number of unsuccessful attempts were made to carry 
out an acid-catalyzed elimination of methanol from the 
methoxy cyclobutene 19, a reaction which we hoped would 
yield the thienocyclobutadiene 22. The failure to achieve 
this conversion appears to be due to the thermal lability 
of 19, which was completely converted to a complex mix- 
ture of products in a neutral deuteriobenzene solution in 
30 min at  45". Preparative decomposition of 19 in reflux- 
ing benzene, or in benzene containing p-toluenesulfonic 
acid at 25", gave, after chromatographic separation, three 
isolable products. The major product was the red naph- 
tho[c]thiophene 21. The second product was also red 
and had spectral properties similar to those of 21, al- 
though it contained a methoxyl group. I t  was therefore as- 
signed structure 23. The third product was colorless and 
contained a carbonyl group, and was assigned structure 
24, which is the expected acid hydrolysis product of 23. It 
has been shown7 that the pareht ketone of 24, namely 25, 
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exists in the keto form rather than in the phenolic form. 
The pyrolysis of either of the stereoisomers of methoxy 
sulfone 18 also gave the naphtho[c]thiophene 21. 

Discussion 
The thermal isomerization of the thienocyclobutene 6 to 

the isomeric dihydronaphtho[c]thiophene 20 is quite anal- 
ogous to the thermolysis of the benzocyclobutene 11,8 the 
naphtho[b]cyclobutene 12,9 and the phenanthro[l]cyclobu- 
tene 261° to give the corresponding rearrangement prod- 
ucts 27, 28, and 29. The rearrangements of 11,  12, and 26 
all proceed by way of reactive o-quinodimethane interme- 
diates ( i e . ,  30), which can be trapped either by olefinic 
dienophiles or by sulfur d i ~ x i d e . ~  s l o + l l  For example, the 
intermediate 30 from 11 is intercepted quantitatively by 
sulfur dioxide in boiling carbon tetrachloride,'l or even in 
ether,12 to give the sulfone 9. 

If the isomerization of 6 to 20 were to follow a similar 
pathway, the o-quinodimethane intermediate 31 would be 
an example of a new type of tetracovalent sulfur struc- 
ture.13 Attempts to intercept 31 during the thermolysis of 
6 with either sulfur dioxide or N-phenylmaleimide were 
completely unsuccessful; only the isomer 20 was formed in 
the presence of these reagents. We conclude, therefore, 
that  the tetravalent nature of the sulfur in quinomethane 
31 destabilizes this species to a considerable extent rela- 
tive to the diradical 32, and that 32 is the actual interme- 
diate in the conversion of 6 to 20. Concerted addition of 
sulfur dioxide or a dienophile to 32 would not be expected 
on the basis of electrocyclic reaction theory.14 Finally, it  
may be pointed out that the conversion of 6 to 20 repre- 
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sents the first case of any condensed cyclobutane aromatic 
compound which decomposes thermally without the gen- 
eration of an 0-quinonoid intermediate. 
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The ultraviolet spectra of both benzocyclobutene and 
naphtho[ blcyclobutene show practically no effect of ring 
strain on the positions of the aromatic maxima.16Js In 
contrast, a p,p-fused four-membered ring causes a consid- 
erable bathochromic shift in the thiophene series. Thus, 
the thieno[c]cyclobutene 6 has as its band of longest 
wavelength a triplet of maxima centered a t  343 nm. Its 
thermal rearrangement product 20, in which an unconju- 
gated six-membered ring has replaced the cyclobutene 
ring, has a corresponding unresolved band centered a t  310 
nm. Since the analogous band of sulfide 13 is observed at  
317 nm, it is clear that the major electronic distortion of 
the 2,5-diphenylthiophene chromophore occurs only when 
a four-membered ring is condensed to the heterocyclic nu- 
cleus. 

Experimental Section 
General. Melting points are uncorrected. Infrared spectra were 

determined in KBr, on a Perkin-Elmer Model 137 spectrophotom- 
eter. Ultraviolet and visible spectra were determined in cyclohex- 
ane solution, unless otherwise noted, using a Perkin-Elmer Model 
202 instrument. Nmr spectra were recorded on a Varian HA-100 
MHz machine. Photolyses were carried out under nitrogen using a 
Hanovia medium-pressure lamp with a Vycor filter. 

Oxidation of Sulfide 13 to Sulfone 15. A solution of 1.6 g of 
cis-1,3-dihydro-1,3,4,6-tetraphenylthieno~3,4-c]thiophene (13)6 in 
180 ml of benzene-methanol (2:l) was treated with 50 ml of 40% 
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peracetic acid. The mixture was refluxed for 1 hr. The crystalline 
cis sulfone 15 was filtered. The filtrate was cooled, cautiously 
treated with ammonia, and extracted (chloroform) to yield addi- 
tional 15. Recrystallization of the total crude 15 from chloroform- 
ethanol afforded 1.3 g (76%) of pure 15: mp 290" dec; nmr 
(CDC13-DMSO) 6 5.86 (s); ir 7.55, 8.80 p (SOz); uv spectrum 
A,,, (EtOH) 310 nm (log t 4.20); mass spectrum m/e (re1 intensi- 
ty) 478 (MA,  5), 414 (M - 64, 100). 

Anal. Calcd for C30Hz2S202: C, 75.31; H, 4.63. Found: C, 74.82; 
H, 4.87. 

Oxidation of Sulfide 14 to Sulfone 16. The corresponding 
trans-dihydrothieno[3,4-c]thiophene ( 14),5 upon peracetic acid 
oxidation in a similar manner, yielded sulfone 16, mp 225" dec, in 
71% yield: nmr (CDC13-DMSO) 6 5.67 (5); ir 7.55, 8.65 /A (Son) ;  
uv spectrum Amax (EtOH) 312 nm (log e 4.20); mass spectrum 
m / e  (re1 intensity) 478 (MA, 6), 414 (M - 64, 100). 

Anal. Calcd for C ~ ~ H ~ ~ S Z O Z :  C, 75.31; H, 4.63. Found: C, 74.62; 
H, 4.86. 

Photolysis of Sulfone 15 to the Thienocyclobutenes 6 and 7.  
A solution of 140 mg of 15 in 430 ml of benzene and 100 ml of 
methanol containing 100 mg of barium oxide was irradiated for 4 
hr. The pale yellow solution was concentrated under reduced 
pressure (<40"). Extraction of the residue with benzene, followed 
by chromatography (Woelm I alumina, benzene-hexane 1: 1 el- 
uent) and crystallization from methanol-ether gave 75 mg (62%) 
of 6: mp 145"; nmr (CDC13) 6 4.47 ( s ) ;  mass spectrum m / e  (re1 in- 
tensity) 414 (M+ 98): uv spectrum A,,, 245 nm (log t 4.28), 328 
(4.41), 343 (4.52), 360 (4.39). 

Anal. Calcd for C ~ O H ~ Z S :  C, 86.93; H, 5.35. Found: C, 87.37; H, 
5.53. 

Elution of the alumina column with benzene gave traces of the 
isomeric cis cyclobutene 7. Accumulation of material from several 
such runs, followed by crystallization from methanol, gave pure 
7: mp 155" dec; nmr (CDC13) 6 5.20; mass spectrum m/e (re1 in- 
tensity) 414 (M+, 77); uv spectrum Amax 243 nm (log e 4.18), 327 
(4.34), 343 (4.44), 360 (4.37). 

Photolysis of Sulfone 16. Photolysis of 100 mg of 16 in ben- 
zene-methanol solution containing 100 mg of barium oxide was 
carried out as described above for isomer 15 to give 60 mg of 6 
(70%), mp 145" dec. 

The absence of methanol and barium oxide in the reaction 
mixture led to a 54% yield of 6, with recovery of 34% of 16. No in- 
terconversion of sulfones 15 and 16 was observed under the reac- 
tion conditions. 

Separation of the Isomers of Methoxy Sulfone 18. The me- 
thoxy sulfone 18 (908 mg), prepared as described earlier,5 was 
boiled with chloroform (120 ml). After cooling, the insoluble crys- 
talline material was filtered to give isomer A (514 mg): mp 234" 
dec; nmr (DMSO-ds) 6 6.27 (s, 1 Hz), 3.63 (s, 3 H); ir 7.60, 8.75 /.I 
(sod. 

Anal Calcd for C ~ I H Z ~ S Z O ~ :  C, 73.23; H, 4.72. Found: C, 73.03; 
H, 5.13. 

Chromatography (silica, benzene eluent) of the residue followed 
by crystallization gave 290 mg of isomer B: mp 210" dec; nmr 
(DMSO-&) 6 6.26 (s, 1 H),  3.35 (s, 3 H); ir 7.60, 8.75 p (SOz). 

Anal. Calcd for CalH24Sz03: C, 73.23; H, 4.72. Found: C, 73.09; 
H, 5.00. 

Photolysis of Isomeric Methoxy Sulfones 18. Photolysis of 100 
mg of sulfone 18A was carried out as described for sulfone 15. Di- 
rect crystallization of the crude product from ether-hexane led to 
the isolation of 30 mg (33%) of 19: mp 137" dec; nmr (CDC13) 6 
4.72 (s, 1 H),  3.00 (s, 3 H); mass spectrum m / e  (re1 intensity) 444 
(M+, 100); uv spectrum Amax 230 nm (sh, log t 4.40), 245 (sh, 
4.25), 330 (4.40), 345 (4.45), 364 (4.31). 

Anal Calcd for C31H24SO: C, 83.76; H, 5.44. Found: C, 83.59; 
H, 5.17. 

Photolysis of the isomeric sulfone 18B gave 19 in similar yield. 
When 18A was photolyzed at 0-lo", the yield of 19 rose to 69%. 

Thermal Rearrangement of 6. The nmr spectrum of a solution 
of 17 mg of 6 in 0.3 ml of hexachlorobutadiene was unchanged 
after 30 min at  25, 30, 40, 50, and 60", no aliphatic proton being 
observed in addition to the singlet at 6 4.47. At 75" new signals a t  
6 5.42 and 3.98 (1:2 ratio) soon appeared and within 45 min the 
signal a t  6 4.47 had vanished completely. 

A solution of 30 mg of 6 in 10 ml of carbon tetrachloride was re- 
fluxed for 1 hr. Evaporation of the solvent and crystallization of 
the residue (ether-hexane) yielded 20 mg of 20: mp 178"; nmr 
(CDC13) 6 5.42 ( 6 ,  1 H), 3.98 (s, 2 H); mass spectrum m / e  (re1 in- 
tensity) 414 (M+ 100); uv spectrum Amax 254 nm (log c 4.151, 310 
(4.29). 

Anal. Calcd for C30HzzS: C, 86.93; H, 5.35. Found: C, 87.35; H, 
5.77. 

Thermal Decomposition of Sulfone 15. The sulfone 15 (100 
mg) was heated in a tube at  290-295" until gas evolution ceased. 
Chromatography (Woelm neutral I alumina, hexane eluent) of 
the residue followed by crystallization (benzene-hexane) gave 45 
mg (52%) of 20, mp 178". 

From 48 mg of sulfone 16, proceeding in a similar fashion, 20 
mg (45%) of 20 was obtained. 

Pyrolysis of Methoxy Sulfone 18A. The sulfone 18A (100 mg) 
was heated at  235" until gas evolution ceased. Chromatography 
(Woelm neutral I alumina, hexane eluent) of the melt followed by 
crystallization gave 25 mg (31%) of 21 as red needles: mp 222"; 
uv-visible spectrum A,,, 255 nm (log t 4.53), 270 (sh, 4.45), 287 
(sh, 4.32), 315 (sh, 4.13), 485 (3.90), 505 (3.95); mass spectrum 
m/e (re1 intensity) 412 (M+, 100). 

Anal. Calcd for CsoHzoS: C, 87.35; H, 4.89. Found: C, 86.70; H, 
5.07. 

Dehydrogenation of 20 to 21. An intimate mixture of 20 (20 
mg) and 5% Pd/C (20 mg) was heated for 5 min over a free flame. 
The melt was dissolved in benzene, freed from catalyst, and chro- 
matographed [silica, benzene-hexane (1:l) eluent] to yield 5 mg 
(25%) of 21, mp 220" (from ether-hexane). 

Attempted Elimination of Methanol from 19. A solution of 20 
mg of 19 in 10 ml of benzene was heated on the steam bath. 
Within a few minutes all of the starting material had disap- 
peared. The solvent was evaporated and the residue was subject- 
ed to plc [silica gel, benzene-hexane (1:l)J to give two red com- 
pounds A and B and a colorless compound C. Compound A, mp 
220", was identical with 21 as shown by comparison of melting 
point and ir and uv spectra with an authentic sample. 

Compound B (23), mp 152" (from ether-hexane), was orange: 
nmr (CDC13) 6 3.44 (s, 3 H); uti-visible spectrum Xmax 235 nm 
(log e 4.92), 278 (sh, 4.15), 287 (sh, 4.13), 476 (3.37), 510 (3.45); 
mass spectrum m/e (re1 intensity) 442 (M+ ,20).  

A satisfactory elemental analysis of this compound could not be 
obtained, probably because of the ease with which it undergoes 
photooxidation. 

Compound C (24) had mp 178" (ether-hexane); nmr 6 5.52 (1 
H, s); uv spectrum Amax 220 nm (sh, log t 4.58), 262 (sh, 4.37), 
279 (4.40), 340 (3.84); ir 6.0 /A (C=O); mass spectrum m / e  (re1 in- 
tensity) 428 (M+, 100). 

Anal. Calcd for C3oHzoSO: C, 84.11; H, 4.67. Found: C, 84.11; 
H, 4.85. 

Conversion of 23 to 24. A solution of 23 (5 mg) in moist ben- 
zene (10 ml) was refluxed for 1 hr after the addition of a trace of 
p-toluenesulfonic acid. The solution was evaporated to dryness. 
The residue was worked up by plc (silica-benzene) to yield 24 (3 
mg, 6l%), mp 178". 

Rearrangement of 6 to 20 in the Presence of Trapping 
Agents. A. In the Presence of Sulfur Dioxide. Sulfur dioxide 
was bubbled through a solution of 10 mg of 6 in 20 ml of ether at 
room temperature, taking care to maintain the solvent level. 
After 3 hr, evaporation of the ether gave unchanged 6 (7 mg). No 
trace of either sulfone 15 or 16 could be detected. The use of ben- 
zene or dimethylformamide a t  room temperature also led to re- 
covery of 6. The sulfur dioxide addition was then attempted in 
boiling solvents, such as carbon tetrachloride, benzene, and xy- 
lene. Again no trace of 15 or 16 was detected, the only product 
isolated being 20, formed in good yield. 

B. i n  the Presence of N-Phenylmaleimide. Solutions of 6 (10 
mg) and N-phenylmaleimide (10 mg) in (a) benzene and (b) chlo- 
roform were stirred at  room temperature for 24 hr. Evaporation 
followed by purification of the residue led to recovery of 6.  

When a solution of 6 (20 mg) and N-phenylmaleimide (20 mg) 
in benzene (10 mg) was refluxed for 4 hr, the product obtained 
was 20 (13 mg). No other product could be detected. 
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Urea and many mono- and disubstituted ureas and their thio analogs react with aldehydes and certain esters 
of trivalent phosphorus acids, providing a route to numerous new a-ureidophosphonates, (RO)zP(O)- 
CHR'NHCONHz, and related products. Surprisingly, triphenyl phosphite is more readily converted to phos- 
phonates in this process than are trialkyl phosphites, a reversal of the normal order of reactivity of phosphite 
esters. Acid catalysis is beneficial in some cases. Urylenediphosphonates, (R0)2P( 0)CHR'NHCO- 
NHCHRP(O)(OR)2, as well as monophosphonates are obtained when unsubstituted urea is used, whereas 
mono- and disubstituted ureas give only monophosphonates. Phosphonite and phosphinite esters react similarly, 
giving ureaphosphinates and -phosphine oxides, respectively. Cyclic 1,4,2-diazaphospholidins are the major 
products when 1,3-dimethylurea is used. Many of the products can be readily hydrolyzed to the corresponding 
ureidophosphonic and -phosphinic acids. 

While the synthesis and properties of many types of ni- 
trogen-containing organophosphorus compounds have 
been widely investigated,l for example, aminophospho- 
nates in biochemical2 and in chelation3 v 4  studies, urea- 
phosphonates have received little attention. In connection 
with our interests in new biologically active structures and 
in permanent fire retardancy of  polymer^,^ a search was 
made for routes to urea derivatives having organophospho- 
rus substituents. The resulting investigation led to the 
discovery that urea and many mono- and disubstituted 
ureas and their thio analogs will react with certain esters 
of trivalent phosphorus acids and aldehydes to give a- 
ureidophosphonates and related products. Numerous com- 
pounds can be synthesized by this process, since the 
structures of all three reactants are subject to broad varia- 

aldehyde may be added gradually to a mixture of urea 
and the phosphite ester at this temperature. Since the 
crude products are mixtures of isomers, resulting from for- 
mation of two asymmetric centers in each diphosphonate 
molecule, crystallization is usually slow. Yields of crystal- 
line diphosphonates isolated have consequently been lim- 
ited to 60% or less even though 31P nmr measurements 
have indicated that some of the crude reaction mixtures 
contained considerably more material. 

Although thiourea is less reactive than urea in this pro- 
cess, results are satisfactory when it is used with triphenyl 
phosphite and an alkyl aldehyde. Tetraphenyl (thiour- 
ylenedibuty1)diphosphonate (2) was obtained from thio- 
urea, triphenyl phosphite and n-butyraldehyde in nearly a 
quantitative yield according to 31P nmr measurements, 

tion. 
The application of this new reaction to the preparation 2(C&0)3P + HzNCSNHz 2CH&H&HzCHO - 

of urylenediphosphonates (la-d) from urea, phosphite es- 
ters, and aldehydes is represented by the following equation. 

Z(R0)zP + HZNCONHZ + 2R'CHO + 

o s 0  
I1 II II 

(C6HS0)2PCHNHCNHCHP(OCcH,)z + 2CsHjOH 
I I 

0 0 0  CH,CH,~H, CH&H,CH? 
I1 II I I  

I I 
(RO),PCHNHCNHCHP(OR), + 2ROH 

R R' 
la, R = C,H,; R' = CH, 
b, R = C,H,; R' = C,H, 
c, R = CH,CH,Cl; R' = CH3 
d, R = CH,CH,Cl; R' = CH(CH,), 

Generally, the reaction is initiated when a mixture of 
the three reactants is warmed to about 60-70"; it is usual- 
ly complete after 10-15 min at  70-100". Alternatively, the 

2 

In a few cases two fractions, presumably d l  and meso 
forms, were isolated. Tetraphenyl (urylenedibenzy1)diphos- 
phonate (lb),  for example, was separated into fractions I 
and 11. 

nmr multiplets for I and I1 
were consistent with the expected phosphorus-hydrogen 
and hydrogen-hydrogen spin couplings for structure lb. 
Conversion of the lH nmr doublet of doublets for each 
fraction to a simple doublet, JCH" = 10 Hz, by heteronu- 
clear 31P spin decoupling provided further evidence of the 

The observed 31P and 


